Bifurcation and Chaotic Behavior of a Discrete-Time SIS Model
نویسندگان
چکیده
The discrete-time epidemic model is investigated, which is obtained using the Euler method. It is verified that there exist some dynamical behaviors in this model, such as transcritical bifurcation, flip bifurcation, Hopf bifurcation, and chaos. The numerical simulations, including bifurcation diagrams and computation of Lyapunov exponents, not only show the consistence with the theoretical analysis but also exhibit the rich and complex dynamical behaviors.
منابع مشابه
The Effect of Time Scales on SIS Epidemic Model
The distribution of diseases is one of the most interesting real-world phenomena which can be systematically studied through a mathematical model. A well-known simple epidemic model with surprising dynamics is the SIS model. Usually, the time domains that are widely used in mathematical models are limited to real numbers for the case of continuous time or to integers for the case of discrete ti...
متن کاملBifurcation and Chaos in Size-Dependent NEMS Considering Surface Energy Effect and Intermolecular Interactions
The impetus of this study is to investigate the chaotic behavior of a size-dependent nano-beam with double-sided electrostatic actuation, incorporating surface energy effect and intermolecular interactions. The geometrically nonlinear beam model is based on Euler-Bernoulli beam assumption. The influence of the small-scale and the surface energy effect are modeled by implementing the consistent ...
متن کاملDynamical behavior and synchronization of chaotic chemical reactors model
In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...
متن کاملStability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function
In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...
متن کاملInvestigation and Control of Unstable Chaotic Behavior Using of Chaos Theory in Two Electrical Power Systems: 1-Buck Converter2- Power Transformer
This paper consist of two sections: control and stabilizing approach for chaotic behaviour of converter is introduced in first section of this paper for the removal of harmonic caused by the chaotic behaviour in current converter. For this work, a Time- Delayed Feedback Controller (TDFC) control method for stability chaotic behaviour of buck converter for switching courses in current control mo...
متن کامل